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Microequilibrium treatment that has previously been limited to tridentate ligands is gen-
eralized to arbitrary number of functional groups in the molecule and the role of symmetry
is also investigated. Cumulative microconstant, a new type of equilibrium parameter, is
introduced, allowing an equivalent, but more compact mathematical treatment of large mi-
croequilibrium systems. The sufficient number of independent pieces of information for
the unambiguous determination of all microconstants is deduced. It has been concluded
that even if protonation mole fraction for all the basic sites is available, determinability of
all the microconstants is rather the exception than the case, without a priori simplifying
assumptions. It has been shown that all microconstants can only be determined from proto-
nation mole fractions for molecules of up to three groups. For molecules of four groups and
beyond, only specific symmetry and the concomitant simplification of the microequilibrium
system make the strict, complete microspeciation feasible. As a case study, the protonation
scheme and the complete microspeciation of a tetradentate ligand is analyzed in detail.

1. Introduction, definitions

Acid-base properties of polyprotic compounds are usually characterized in terms
of proton-association or -dissociation equilibrium constants. These thermodynamic
parameters can be classified in several ways. Two major aspects of their classification
are the direction of the process, and thoroughness of the information provided by the
equilibrium constant.

If the equilibrium process is regarded from the direction of association, the con-
stant is a protonation one (the values are typically given in K or logK units), whereas
those that refer to the proton liberation are acidity, or dissociation constants (Ka, pKa).
Both of them can refer to one single step of hydrogen ion release or binding (stepwise or
successive constants, K1,K2, . . . ,Kn; Ka1,Ka2, . . . ,Kan), or can accumulate all pre-
vious steps (cumulative constants, β1,β2, . . . ,βn; βa1,βa2, . . . ,βan). The dissociation-
and association-oriented formulas can be interconverted, indicating that the related de-
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finitions do not imply principal differences. For the simplicity of formulations (and
in accordance with the widely accepted convention of complex equilibria [8]), all
equilibria are treated hereinafter as association ones.

The second major aspect of classification is the thoroughness of the information
provided by the equilibrium constant. In this sense, structure-unrelated and structure-
related parameters are distinguished. The structure-irrespective ones are macrocon-
stants, which are definite in the stoichiometry of the species participating in the equi-
librium process, but not in any kind of their structure [9]. The vast majority of reported
equilibrium constants is macroconstants. The prefix, macro- or macroscopic is there-
fore usually omitted. Protonation macroconstants, βi (i = 1, 2, . . . ,n) characterize the
proton-binding propensity of the polyfunctional molecule as a whole,

L + iH+ 
 HiL, βi =
[HiL]

[L] · [H+]i
=

i∏
j=1

Kj =
i∏

j=1

[HjL]
[Hj−1L] · [H+]

, (1)

and, in principle, they cannot be assigned to individual binding sites. For the sake of
simplicity, charges of the species (except for that of H+) are omitted in our study.

Site-specific proton-binding equilibria can be expressed in terms of group con-
stants, microconstants and submicroconstants. In this order, the structural content of
the equilibrium constant is increasingly profound. Group constants reflect the proton-
binding capability of individual groups, when the protonation state and hence the
inductive effects of the rest of the molecule can be disregarded. Their properties
and applications have been described earlier [11,12]. The now classical microscopic
(or micro-) constants depict the basicity of proton-binding sites, when the protonation
state of the other moieties is also definite [2,4,6,9–12,14,16–18,20,22,24]. Submicro-
constants quantitate the basicity of individual proton-binding sites as well, when not
only the protonation state, but the conformational (rotational) status of the molecule
is also definite [13]. The analysis of submicroequilibria is beyond the scope of this
paper.

Figure 1 shows the microequilibrium scheme of a biprotic molecule, in which
the basic sites are A and B. The proton-coordination to either of the sites is denoted
by H. The overlapping protonation of the α- and β-carboxylates of aspartate between
pH 1 and 6 can be taken as an example, hence in this pH region the proton-uptake
of the more basic amino group is complete [13]. There are four microspecies (four
different forms of protonation of the molecule): a, b, c and d in the solution. Their
concentrations can be related to the hydrogen ion concentration and the microconstants
kA, kB, kA

B and kB
A:

kA =
[b]

[a] · [H+]
, kB =

[c]
[a] · [H+]

, (2a)

kA
B =

[d]
[c] · [H+]

, kB
A =

[d]
[b] · [H+]

. (2b)
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Figure 1. Protonation scheme of a molecule containing two functional groups, A and B.

The superscript on microconstant k denotes the functional group protonating in the
given process, while the subscript (if any) denotes the group already protonated.

The relationships between the protonation micro- and macroconstants for a biden-
tate molecule are as follows [2]:

β1 =K1 = kA + kB, (3a)

β2 =K1K2 = kAkB
A = kBkA

B . (3b)

These equations can be incorporated into the total (analytical) concentration of the
ligand:

CL = [a] + [b] + [c] + [d] = [a] ·
(
1 + kA[H+

]
+ kB[H+

]
+ kAkB

A

[
H+
]2)

= [L] + [HL] + [H2L] = [L] ·
(
1 + β1

[
H+
]

+ β2
[
H+
]2)
. (4)

Microspecies b and c are of the same stoichiometric composition, but they hold
the proton at different site, therefore called protonation isomers. Their concentration
ratio (in certain cases called as zwitterion constant [6], which is not the general case)
is independent of both the pH and the total ligand concentration:

kzw =
[b]
[c]

=
kA[a][H+]
kB[a][H+]

=
kA

kB =
[d] · (kB

A[H+])−1

[d] · (kA
B [H+])−1

=
kA

B

kB
A

. (5)

Since in most solvents the protonation processes are instantaneous, the protonation
isomers occur exclusively in the presence of each other in the solution. Consequently,
their individual spectroscopic or kinetic characteristics cannot be measured by direct
methods [11]. It has been shown, however, that they act individually in specific
biochemical reactions and the reactive species is not necessarily the major one [14].
The determination of microspecies concentrations and microconstants are interrelated
and unified in the term of microspeciation.
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Figure 2. Protonation scheme of a molecule containing three functional groups, A, B and C.

Protonation at site A typically diminishes the basicity of site B and vice versa.
This effect is expressed by the interactivity parameter [10,17,20]:

log ∆EAB = log kA
B − log kA = log kB

A − log kB. (6)

In most cases, the value of log ∆EAB is negative, indicating a negative cooperativity
between the two sites, otherwise the cooperativity is positive. The interactivity parame-
ter is a relatively invariant quantity. It is perturbed to a lesser extent by the protonation
and the concomitant electron withdrawing effects of other groups than the microcon-
stants themselves [20]. The interactivity parameter pertaining to the same molecular
fragment and analogous pair of functional groups can therefore be transferred from
small molecules to appropriate moieties of large molecules.

In fact, equation (5) states the mathematical constraint kAkB
A = kBkA

B between the
four microconstants, therefore only three of them are independent parameters. Thus,
the degree of freedom in the two-group microequilibrium system is three. In other
words, the knowledge of three arbitrarily chosen, mathematically independent basicity
parameters (e.g., K1, K2, kA or K1, kB, ∆EAB, etc.) is a necessary and sufficient
condition to compute all the microconstants.

The microequilibrium scheme for a three-group ligand is depicted in figure 2.
The relations connecting macro- and microconstants [11] are given as follows:

β1 =K1 = kA + kB + kC, (7a)

β2 =K1K2 = kAkB
A + kAkC

A + kBkC
B = kBkA

B + kCkA
C + kCkB

C, (7b)

β3 =K1K2K3 = kAkB
Ak

C
AB = kBkA

Bk
C
AB = · · · . (7c)
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The species HL exists in the form of three nonidentical protonation isomers in the
solution. It will be shown that only seven of the twelve microconstants are independent.
The extended complexity of a triprotic over a diprotic system is self-explanatory.

In the general case, a molecule containing n basic sites has 2n microspecies and
n · 2n−1 microconstants [9,11]. The exponentially increasing complexity of the mi-
croequilibrium system is certainly the reason why the vast majority of microspeciation
studies considers bidentate molecules. Correct microconstants of tridentate ligands are
sporadic in the literature [10,24 and references therein] and as far as we are concerned
just one paper appeared on microequilibria of a tetraprotic system [20]. This is espe-
cially surprising in view of the fact that recent papers in prominent journals [6,10,24]
indicate the obvious need of an improved, general treatment of microspeciation, since
most biomolecules are polyprotic ones, and their interactions take place via specific
microforms.

Concerning, however, the general treatment of microequilibria, several principal
questions arise, which as yet have not, or have only partially been answered. What is
the impact of intramolecular symmetry elements on the number of microspecies and
microconstants? What is the sufficient number of pieces of information to determine
all the microconstants? Are there theoretical limits of the complete microequilibrium
treatment and in which cases?

Here, the number of independent parameters describing unambiguously an arbi-
trary microequilibrium system is studied first, followed by the feasibility and limitations
of parameter calculations from the experimental data. In order to avoid ill-conditioned
mathematical models during the parameter estimation procedure, suitable combinations
of microconstants are presented. The theoretical findings are illustrated by a detailed
analysis of the protonation sequence of a symmetrical, tetraprotic compound.

2. Theory

2.1. The number of independent microconstants

Let A, B, C, . . . , etc. basic sites be parts of a molecule and let their number
be n. Assuming no symmetry relation between the sites, the number of two-proton-
containing isomers is

(
n
2

)
and that of the i-proton-containing protonation isomers is

(
n
i

)
.

Consequently, the total number of microspecies Nmax
msp can be given [9,11] as

Nmax
msp =

n∑
i=0

(
n

i

)
= 2n. (8)

(The superscript max will be explained below.) In a microspecies holding i protons,
the number of unoccupied sites is n− i, and this is also the number of its possible pro-
tonation processes and the corresponding microconstants, as figures 1 and 2 illustrate.
For example, a molecule of A, B, C, D and E sites, protonated at sites A and D, can
bind a third proton at sites B, C and E. The related microequilibria are characterized
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in terms of the microconstants kB
AD, kC

AD and kE
AD, respectively. In the general case,

Nmax
msp , the total number of microconstants in the system can be expressed as

Nmax
msp =

n∑
i=0

(
n

i

)
· (n− i) = n · 2n−1. (9)

Thus, the number of microconstants can be enormously large, even in molecules of
medium size. Not all the microconstants are, however, independent, due to relations
like equation (5). One of the objectives of this work is the derivation of the number
of independent microconstants for an arbitrary molecule.

If the molecule contains symmetry elements, certain basic sites become equiva-
lent, which can be envisioned by a proper Cn rotation, which transform them into one
another. If the number of equivalent A sites (denoted by A, A′, A′′, etc.) is n1, the
multiplicity of site B is n2, etc. and the multiplicity of the νth site is nν , the summation
of these numbers leads to the number of all the functional groups,

n =
ν∑
k=1

nk. (10)

Those protonation isomers, which hold the same number of protons on their equivalent
moieties, have the same constitution and represent physically indistinguishable species
in the solution (see also section 4). Hence, symmetry diminishes the number of mi-
crospecies with different constitution, as compared to the general case: Nmsp < Nmax

msp .
Since identical microspecies must also be identical in their basicity [20,22], the cor-
responding microconstants should also have the same value. Thus the number of
different microconstants diminishes as well, Nmc < Nmax

mc . At ligands of no symmetry,
ν equals to n and the complexity of the microequilibrium system is maximum.

Microspeciation aims at determining the concentration of all microspecies in the
solution, including the most inferior ones. This requires the knowledge of at least
one microconstant for each microspecies, corresponding to a microequilibrium step,
in which that microspecies forms. In complete analogy to the cumulative stability
constant βi defined for the macrospecies HiL, we introduce a new unifying parameter,
the cumulative Hessian microconstant κ for each microspecies. This parameter is
cumulative, since all previous steps of protonation are incorporated, and can be called
Hessian, because it expresses its thermodynamic nature, being independent of the
intermediate stages and ways of the microspecies formation. It can be expressed as
the product of the corresponding (stepwise) k microconstants. For example, κe for
microspecies e in figure 2 can be formulated as

κe = kAkB
A = kBkA

B . (11)

The concentration of this microspecies can be calculated as

[e] = αe · CL =
κe[H+]2

D
· CL, (12)
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where αe is the mole fraction of microspecies e, CL is the total ligand concentration,
and D is expressed below:

D=
CL

[a]
=

[a] + [b] + · · ·+ [z]
[a]

=
[L] + [HL] + [H2L] + · · · + [HnL]

[L]

= 1 +
n∑
i=1

βi ·
[
H+
]i
. (13)

In the concentration expression of a, the completely deprotonated microspecies no
unknown κ cumulative microconstant occurs:

[a] = αa · CL =
κa
D
· CL =

1
D
· CL. (14)

Thus, the calculation of concentrations for the remaining Nmsp−1 microspecies requires

DFmc = Nmsp − 1 (15)

microscopic protonation parameters. DFmc is the number of degrees of freedom in the
microspeciation system. This is, actually, the number of mathematically independent
microconstants. The other microconstants can be calculated from this minimum set of
parameters using constraints like

kA · kB
A = kA · kB

A or kC
AA′ · kD

AA′C = kD
AA′ · kC

AA′D etc. (16)

Concerning the protonation scheme in graph representation, the vertices of the
graph can be identified as the microspecies and the edges are the microconstants. The
protonation scheme is always a connected graph, since each vertex can be reached
from all other vertices. Constraints like equation (5) correspond to circles in the
graph. A spanning tree of the graph means a tree with minimum edges, which covers
all the vertices. The enumeration of the independent microconstants is equivalent to
counting the edges of the spanning tree. In graph theory it is known that a walk
reaching all the N vertices of a connected graph consists of N − 1 edges. The same
result is stated in equation (15).

2.2. Description of the microequilibrium system in terms of interactivity parameters

The interactivity parameter (equation (6)) establishes a relationship between two
particular sites in a molecule. It quantitates a protonation-initiated, reciprocal change
(usually drop) of basicity in a pair of sites. In a molecule containing n basic sites, the
number of such pairs of sites can be given as

Nip =

(
n

2

)
=
n · (n− 1)

2
. (17)

For the trifunctional system (figure 2), the interactions among the three moieties can
be quantitated in terms of the ∆EAB, ∆EAC and ∆EBC interactivity parameters. For
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instance, the basicity of site C in microspecies e, characterized by kC
AB, can be decom-

posed into the kC intrinsic basicity and the two modifying effects upon protonation of
sites A and B:

log kC
AB = log kC + log ∆EAC + log ∆EBC. (18)

In a similar, additive manner, every microconstant in the protonation scheme can
be expressed using n independent microconstants and Nip interactivity parameters.
Thus, the degree of freedom DFip expressed in terms of intrinsic microconstants and
interactivity parameters can be formulated as

DFip = n+Nip. (19)

It can be concluded that the interactivity parameter treatment provides the description
of the system with the same thoroughness but using fewer parameters than the full
microconstant treatment outlined in the previous section. The missing part of the
information is supplied here by the a priori assumption that interactivity parameters
are invariant at various protonation stages of the rest of the ligand.

2.3. The number of experimentally available parameters

The most frequently used experimental arrangement for the determination of mi-
croconstants is a combination of pH potentiometry and a pH-dependent set of spectra.
The former technique provides the macroconstants, the latter one selectively monitors
the protonation of one, or some of the basic sites [4,6,9,17,18,20]. If a spectroscopic
method is sufficiently sensitive to the protonation changes of all sites, the pH-dependent
spectral data can serve as exclusive source for the determination of all constants. Such
“spectral–pH” techniques are ideally suited for the determination of microconstants
if the protonation of the particular sites can exclusively be assigned to some spectral
changes. Our treatment below is focused on such a case. Among the various methods
applied to date, NMR–pH [10,17,18,20,22,24] and UV–pH titrations [6,15,16] have
been most widely employed. In both techniques, a spectral parameter (chemical shift
or absorbance) is recorded as a function of pH. The so-called protonation fraction
curves can be calculated from the experimental titration curves [10,17]. The protona-
tion fraction of a particular site, k (k = 1, 2, . . . ,n) is defined as

fk =
sum of concentrations of microspecies protonated on site k

sum of concentrations of all microspecies
. (20)

The summation in the denominator gives CL, the total ligand concentration. For
example, the protonation fraction of site B for the triprotic molecule (figure 2) is given
in equation (21):

fB =
[c] + [e] + [g] + [h]

[a] + [b] + [c] + [d] + [e] + [f ] + [g] + [h]
. (21)
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Expressing the microspecies concentrations in terms of cumulative microconstants (see
equations (12) and (14)) and simplifying with [a] yields

fB =
κc[H+] +κe[H+]2 +κg[H+]2 +κh[H+]3

1 + κb[H+] + κc[H+] +κd[H+] +κe[H+]2 +κf [H+]2 +κg[H+]2 +κh[H+]3 .

(22)

Compressing the κ coefficients of the same power of [H+] into a common Q value
yields a fractional rational function of the third degree in [H+]

fB =
QB,1[H+] +QB,2[H+]2 +QB,3[H+]3

1 + β1[H+] + β2[H+]2 + β3[H+]3 . (23)

In this relation QB,2 is the sum of the κ constants of those microspecies, which hold
proton on site B. Note that the corresponding cumulative parameter, the β2 macrocon-
stant incorporates all protonation isomers with the formula H2L, irrespective of the
site of protonation.

In general, a molecule with n basic sites has n protonation fraction functions,
each being a fractional rational function of the nth degree in [H+],

fA
([

H+
])

=
QA,1[H+] +QA,2[H+]2 + · · ·+QA,n−1[H+]n−1 +QA,n[H+]n

1 + β1[H+] + β2[H+]2 + · · · + βn−1[H+]n−1 + βn[H+]n
, (24a)

fB
([

H+
])

=
QB,1[H+] +QB,2[H+]2 + · · ·+QB,n−1[H+]n−1 +QB,n[H+]n

1 + β1[H+] + β2[H+]2 + · · ·+ βn−1[H+]n−1 + βn[H+]n
, (24b)

...

The Q coefficients always build up from κ cumulative microconstants of one or several
microspecies. In symmetrical molecules, the protonation fractions of equivalent sites
are equal [22]. Hence, only ν different protonation fractions can be measured, where
ν is the number of non-equivalent sites.

Summation of all the protonation fractions yields the so-called Bjerrum func-
tion [3],

n∑
i=1

fi =
ν∑
k=1

(nk · fk) = n[H+], (25)

which gives the average mole of protons associated with the ligand at a given pH.
This quantity can be measured in separate experiments by well-known, sophisticated
methods, like pH potentiometry [19]. Consequently, if one measures the n function
under exactly the same experimental conditions, it suffices to record the protonation
of (ν − 1) moieties with site-specific techniques [12].

If the coefficients of [H+] are compared in Bjerrum’s classical formula

n[H+] =
β1[H+] + 2 · β2[H+]2 + · · · + n · βn[H+]n

1 + β1[H+] + β2[H+]2 + · · ·+ βn[H+]n
=

∑n
i=1 iβi[H

+]i

1 +
∑n

i=1 βi[H
+]i

(26)
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and in equations (24)–(25), the general relations between macro- and microconstants
can be derived:

βi =
1
i
·
n∑
j=1

Qj,i =
1
i
·
ν∑
k=1

nkQk,i, i = 1, 2, . . . ,n. (27)

This result clearly shows that macroconstants cannot be regarded as further independent
parameters over the microconstants. Thus, they do not influence the number of degrees
of freedom.

Equations (24) have a common denominator and both their numerator and de-
nominator are uniquely determined by the Q coefficients at a particular pH. The last
Q coefficients in all these functions refer to the fully protonated microspecies. Thus,
they are equal in equations (24) and (26):

QA,n = QB,n = · · · = βn. (28)

Every (24)-type equation contains a Qk,n coefficient, as common parameter, plus
n− 1 Q-type unknown parameters. Accordingly, Nexptl, the number of experimentally
available parameters from the ν different fk-type functions, the most sophisticated
relationships of the field, can be given as in equation (29):

Nexptl = ν(n− 1) + 1. (29)

On this basis, we postulate the following statement. If the number of unknown equilib-
rium constants DFmc is greater than the experimentally available cumulative parameters
(DFmc > Nexptl), not all the microspecies concentrations can be necessarily calculated
from the experimental data. In fact, this is rather the case than the exception if n > 3,
as will be shown in section 3. In other words, the determination of all the microcon-
stants for molecules of more than three basic sites can be not only technically difficult,
but also theoretically impossible. This statement seems unquestionably true at the
present status of state-of-the-art instrumentation. If, however, sometime in the future,
for example, a spectroscopy is invented, of which the timescale is shorter than the
lifetime of individual microspecies, the above statement can become obsolete. Such
progress, at the moment, is hard to foresee. The above mentioned theoretical impossi-
bility, perhaps, with the more easily comprehensible complexity of microspeciation on
molecules with more than three sites could be the burden that prevented microequilib-
rium studies on such systems so far. It must also be mentioned that less strict treatment
(importing, for example, interactivity parameters from related, simplified molecules)
may result in the estimation of all microconstants.

Our statement was confirmed by model studies and computational experience for
various molecular symmetry: when the number of unknown parameters (logQ val-
ues) was greater than Nexptl during the least-squares fitting of equations (24), some
parameters were highly correlated and statistically insignificant. In addition, the effec-
tive dimensionality of the parameter space (which equals to the rank of the estimated
correlation matrix of the parameters, determined by principal component analysis [5])
was always found exactly equal to Nexptl.
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Table 1
The number of functional groups (n); the number of groups of different symmetry (ν); the number of dif-
ferent microspecies (Nmsp) and microconstants (Nmc); the number of degrees of freedom (DFmc and DFip)
and the number of experimentally available parameters (Nexptl) for various symmetries of polydentate
molecules. NTA = nitrilo-triacetate, Ins(1, 2, 6)P3 = D-myo-inositol-1, 2, 6-tris(phospate), GSSG = oxi-
dized glutathione, DTPA = diethylenetriaminepentaacetate, TTHA = triethylenetetraminehexa-acetate.

For further information, see text.

n Symmetry ν Nmsp Nmc DFmc Nexptl DFip Example

2 A2 1 3 2 2 2 1 + 1 succinate carboxylates
2 AB 2 4 4 3 3 2 + 1 lysine amino groups
3 A3 1 4 3 3 3 1 + 1 NTA carboxylates
3 A2B 2 6 7 5 5 2 + 2 citrate carboxylates
3 ABC 3 8 12 7 7 3 + 3 Ins(1, 2, 6)P3 phosphates
4 A4 1 5 4 4 4 1 + 1 EDTA carboxylates
4 A3B 2 8 10 7 7 2 + 2 –
4 A2B2 2 10 16 9 7 2 + 4 GSSG carboxylates
4 A2BC 3 12 20 11 10 3 + 4 –
4 ABCD 4 16 32 15 13 4 + 6 trilysine amino groups
5 A5 1 6 5 5 5 1 + 1 –
5 A4B 2 10 13 9 9 2 + 2 DTPA carboxylates
5 ABCDE 5 32 80 31 21 5 + 10 tobramycin amino groups
6 A6 1 7 6 6 6 1 + 1 mellitate carboxylates
6 A5B 2 12 16 11 11 2 + 2 –
6 A4B2 2 15 48 14 11 2 + 3 TTHA carboxylates
6 ABCDEF 6 64 192 63 31 6 + 15 corticotropin
...
n An 1 n+ 1 n n n 1 + 1 –
n An−1B 2 2n 3n− 2 2n− 1 2n− 1 2 + 2 –
n ABCD. . . n 2n n · 2n−1 2n − 1 ν(n− 1) + 1 n+

(
n
2

)
–

3. Strategies to compute microconstants at various molecule symmetries

In order to exemplify, visualize and analyze relationships among denticity, sym-
metry and parameter determinability, we have constructed microscopic protonation
schemes and models for molecules of two to six donor groups with every possible
symmetry. The number of necessary parameters (DFmc or DFip) for the complete mi-
crospeciation treatment, as well as the number of experimentally available parameters
(Nexptl) are shown in figure 1 and table 1, together with representative ligands. Com-
paring these two quantities, every polyfunctional molecule can be classified into one
of the following three categories:

All microconstants can be calculated from the macroconstants
This is the case, when all binding sites are equivalent (A2, A3, A4, . . . , An sym-

metry).
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The microconstants can be computed from the stepwise macroscopic constants,
using relationships [21] as shown in equations (30a)–(30c):

log kA = logK1 + log
1
n

, log kA′
A = logK2 + log

2
n− 1

, (30a)

log kA(n−1)

AA′...A(n−2) = logKn−1 + log
n− 1

2
, (30b)

log kA(n)

AA′...A(n−2)A(n−1) = logKn + log
n

1
. (30c)

In these cases, the application of site-specific (spectroscopic) techniques is not nec-
essary, the high symmetry allows the calculation of submolecular basicity from the
macroconstants directly [11].

The number of microconstants and that of the experimentally available parameters
are equal

This is the case when all but one binding sites are equivalent (AB, A2B, A3B,
A4B, . . . , An−1B symmetry) and, interestingly, the general trifunctional case, ABC
also belongs here.

Table 1 shows that DFmc = Nexptl, hence all microconstants can be obtained from
the experimental protonation fraction curves with simultaneous least-squares fitting.
Depending on the fitting functions used, the calculation procedure may result in

(a) the logarithms of independent microconstants (direct method),

(b) the logarithms of the unknown κ cumulative microconstants,

(c) the logarithms of the Q coefficients.

The three methods lead to the same result (within the limits of calculation error),
since the problem is not overparametrized. No simplifying chemical assumptions are
needed.

Not all the microconstants can be extracted
This is the case of all molecules and symmetries not listed in the above two

categories.
Unfortunately, almost all multibasic natural or synthetic ligands (e.g., peptides,

chelators, drug molecules, etc.) are typical compounds of low symmetry and they
therefore belong to this class. Since DFmc > Nexptl, all microconstants cannot be
computed unambiguously from the experimental data. There are, however, reasonable
approaches and efficient strategies for the computation of a large number of microcon-
stants even for such cases.

(a) The functional form of equations (24) always allows the fitting of the log Q para-
meters (unlike the fitting of the microconstants themselves). From these quantities,
it is possible to calculate the cumulative microconstants of certain microspecies,
hence their concentration can be computed. For the rest of the microspecies, only
the sum of concentrations can be obtained unambiguously.
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Figure 3. The number of independent microconstants DFmc (×) and the number of experimentally
available parameters Nexptl (©) for polyfunctional molecules of various symmetry.

(b) With chemical preconditions, of course, it is possible to unravel the complete
protonation scheme. Assuming the additivity and transferability of the interactivity
parameters (see equation (18)), only DFip < DFm parameters are required for the
complete description, which can be more readily obtained by parameter estimation
methods. This approach has recently been used to characterize the basicity of the
four carboxylates of oxidized glutathione (GSSG) [23].

(c) If the binding sites are separated by more than three sigma bonds, their inductive
communication can be neglected. The basicity of the groups can be quantified
in terms of n < DFip < DFm group constants [11], indicating a further decrease
in the number of degrees of freedom to the debit of a more stringent a priori
chemical precondition.

The information content on the basicity-modifying interactions of the sites as
well as on the pH-dependent fine structure of the ligand gradually decreases from (a)
to (c).

4. A case study on a tetrabasic acid of A3B symmetry

As a particular example, the microscopic protonation equilibria of a four-group
ligand are discussed (figure 4). A molecule of this type can be found, for example, in
two affinity capillary electrophoresis studies [1,7]. Three carboxylate groups (A, A′

and A′′) are equivalent, thus the ligand belongs to the A3B case of symmetry. The
protonation scheme (figure 5) contains all the sixteen microspecies (a, b, . . . , p). There
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Figure 4. Structure of a tetraprotic molecule H4L belonging to the A3B symmetry and its symbol in the
fully protonated state.

Figure 5. Protonation scheme of an A3B ligand. For a particular molecule of this symmetry, see figure 4.
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are, however, eight constitutionally distinguishable microspecies in the solution only,
since certain chemical entities are identical: c ≡ d ≡ e, f ≡ g ≡ h, i ≡ j ≡ k and
l ≡ m ≡ n. Consequently, some of the 32 microconstants have also identical values,
the number of different microconstants is Nmc = 10. Table 1 shows that the number
of independent microconstants is DFm = 7. Hence, the cumulative microconstants of
the microspecies can be expressed in terms of seven independent microconstants (k):

κa = 1, κb = kB, κc = kA, (31a)

κf = kA · kB
A, κi = kA · kA′

A , κl = kA · kA′
A · kB

AA′ , (31b)

κo = kA · kA′
A · kA′′

AA′ , κp = kA · kA′
A · kB

AA′ · kA′′
AA′B. (31c)

Applying the (20)–(23) protonation fraction equations for the A and B type car-
boxylates of this ligand yields

fA =
[c] + [f ] + [i] + [j] + [l] + [m] + [o] + [p]

[a] + [b] + [c] + [d] + [e] + [f ] + [g] + [h] + [i] + [j] + [k] + [l] + [m] + [n] + [o] + [p]

=
QA,1[H+] +QA,2[H+]2 +QA,3[H+]3 +QA,4[H+]4

1 + β1[H+] + β2[H+]2 + β3[H+]3 + β4[H+]4
, (32a)

fB =
[b] + [f ] + [g] + [h] + [l] + [m] + [n] + [p]

[a] + [b] + [c] + [d] + [e] + [f ] + [g] + [h] + [i] + [j] + [k] + [l] + [m] + [n] + [o] + [p]

=
QB,1[H+] +QB,2[H+]2 +QB,3[H+]3 +QB,4[H+]4

1 + β1[H+] + β2[H+]2 + β3[H+]3 + β4[H+]4
. (32b)

Due to the equivalence of the three A sites in the compound,

fA′ = fA′′ = fA. (33)

In the above equations, the coefficients Q are composed of the cumulative microcon-
stants as follows:

QA,1 = κc, QA,2 = κf + 2 · κi, QA,3 = κo + 2 · κl, (34a)

QA,4 = κp, QB,1 = κb, QB,2 = 3 · κf , QB,3 = 3 · κl. (34b)

The expressions of the cumulative macroconstants clearly reflect the symmetry of the
three A sites:

β1 = (3 ·QA,1 +QB,1)/1, β2 = (3 ·QA,2 +QB,2)/2, (35a)

β3 = (3 ·QA,3 +QB,3)/3, β4 = (3 ·QA,4 +QB,4)/4 = QA,4. (35b)

If the protonation of the carboxylates is monitored, e.g., by 1H NMR spectroscopy, the
protonation fractions can be obtained from the experimental data using the following
expressions [10,17,22]:

δX = δXp · fA + δXd · (1− fA) and δY = δYp · fB + δYd · (1− fB), (36)

where δX and δY are the pH-dependent chemical shifts of the covalently bound hydro-
gens adjacent to the carboxylates (see figure 4), δXp, δXd, δYp and δYd are their limiting
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values in the fully protonated and deprotonated state of the ligand, respectively. Ta-
ble 1 shows that all microconstants can be calculated from the fA and fB functions
by nonlinear parameter estimation methods.

5. Concluding remarks

The earlier, general misbelief that microspeciation of molecules beyond three
sites is only a matter of simple extension of existing relationships and methods is
confuted. In fact, it is shown here that rigorously consistent microspeciation of more
than tridentate ligands is feasible under certain symmetry conditions only. The re-
lationships among the number and symmetry of sites, the number of experimentally
available parameters and the degrees of freedom are itemized for molecules of up to six
sites. Molecules with the corresponding

(6
2

)
= 15 or more real inter-site interactions

hardly exist in practice, since such a large number of sites quite necessarily involves
some simplifying molecular conditions, such as a large number of isolating bounds.
Consequently, itemization of considerations for molecules of n > 6 is unnecessary.
There can be, however, real molecules with 4 or 5 sites, in which microequilibria of
high complexity is the case, and the principles established in this paper can be put into
real chemistry practice. We will publish such cases for the carboxylates of oxidized
glutathione, a molecule of A2B2 symmetry and ovothiol, a natural compound of ABCD
symmetry.
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